Exercise 2.5.14

Show that the "backward" heat equation

$$
\frac{\partial u}{\partial t}=-k \frac{\partial^{2} u}{\partial x^{2}}
$$

subject to $u(0, t)=u(L, t)=0$ and $u(x, 0)=f(x)$, is not well-posed. [Hint: Show that if the data are changed an arbitrarily small amount, for example,

$$
f(x) \rightarrow f(x)+\frac{1}{n} \sin \frac{n \pi x}{L}
$$

for large n, then the solution $u(x, t)$ changes by a large amount.]

Solution

The backward heat equation and the boundary conditions are linear and homogeneous, so the method of separation of variables will be applied to solve it. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and plug it into the PDE

$$
\frac{\partial u}{\partial t}=-k \frac{\partial^{2} u}{\partial x^{2}} \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=-k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)] \quad \rightarrow \quad X T^{\prime}=-k X^{\prime \prime} T
$$

and the boundary conditions.

$$
\begin{array}{lllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & \rightarrow & X(0)=0 \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & \rightarrow & X(L)=0
\end{array}
$$

Divide both sides of the PDE by $k X(x) T(t)$ to separate variables.

$$
\frac{T^{\prime}}{k T}=-\frac{X^{\prime \prime}}{X}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{T^{\prime}}{k T}=-\frac{X^{\prime \prime}}{X}=\lambda
$$

As a result of separating variables, the PDE has reduced to two ODEs - one in each independent variable.

$$
\left.\begin{array}{rl}
\frac{T^{\prime}}{k T} & =\lambda \\
-\frac{X^{\prime \prime}}{X} & =\lambda
\end{array}\right\}
$$

Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Solve the ODE for X.

$$
X^{\prime \prime}=-\lambda X
$$

Check for positive eigenvalues: $\lambda=\mu^{2}$.

$$
X^{\prime \prime}=-\mu^{2} X
$$

The general solution can be written in terms of sine and cosine.

$$
X(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& X(0)=C_{1}=0 \\
& X(L)=C_{1} \cos \mu L+C_{2} \sin \mu L=0
\end{aligned}
$$

This first equation makes the second one reduce to $C_{2} \sin \mu L=0$. In order to avoid getting the trivial solution, we insist that $C_{2} \neq 0$.

$$
\begin{aligned}
\sin \mu L & =0 \\
\mu L & =n \pi, \quad n=1,2, \ldots \\
\mu & =\frac{n \pi}{L}
\end{aligned}
$$

There are positive eigenvalues $\lambda=\left(\frac{n \pi}{L}\right)^{2}$, and the eigenfunctions associated with them are

$$
X(x)=C_{2} \sin \mu x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L} .
$$

Note that only positive values of n are considered because $n=0$ leads to the zero eigenvalue, and negative integers lead to redundant values of λ. With $\lambda=\frac{n^{2} \pi^{2}}{L^{2}}$, solve the ODE for T now.

$$
\frac{T^{\prime}}{k T}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

The general solution is an exponential function.

$$
T(t)=B \exp \left(k \frac{n^{2} \pi^{2}}{L^{2}} t\right)
$$

Check to see if zero is an eigenvalue: $\lambda=0$.

$$
X^{\prime \prime}=0
$$

The general solution is a straight line.

$$
X(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{4}=0 \\
& X(L)=C_{3} L+C_{4}=0
\end{aligned}
$$

The first equation makes the second one reduce to $C_{3} L=0$, which means $C_{3}=0$.

$$
X(x)=0
$$

The trivial solution is obtained, so zero is not an eigenvalue. Check to see if there are negative eigenvalues: $\lambda=-\gamma^{2}$.

$$
X^{\prime \prime}=\gamma^{2} X
$$

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(L)=C_{5} \cosh \gamma L+C_{6} \sinh \gamma L=0
\end{aligned}
$$

The first equation makes the second one reduce to $C_{6} \sinh \gamma L=0$. No nonzero value of γ can satisfy this equation, so $C_{6}=0$.

$$
X(x)=0
$$

The trivial solution is obtained, so there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE is a linear combination of the eigenfunctions $u=X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left(k \frac{n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Use the final boundary condition to determine the constants B_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin \frac{p \pi x}{L}$, where p is an integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}=f(x) \sin \frac{p \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L}\left(\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L}\right) d x=\int_{0}^{L} f(x) \sin \frac{p \pi x}{L} d x
$$

Split up the integral on the left and bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{p \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{p \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq p$. Only if $n=p$ does this integral yield a nonzero result.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Therefore,

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Even though a solution was obtained to the backward heat equation with the method of separation of variables, there is a problem: It lacks stability. After a very long time τ, the exponential function makes the solution u astronomical in size. The boundary condition $u(0, t)=0$ remains satisfied for all time, so $u(0, \tau)=0$. Moving just a little bit to the right, for example, $u(0.01, \tau)$ results in a sudden jump in the value of u. In other words, a small change in (x, t) does not result in a similarly small change in u. The problem is not well-posed.

